Tattoo Removal Using Python

We recommend using Pycharm for completing this project to ensure maximum simplicity.

Setup

To set up the programme, you need to install the following libraries:

NameFunction
NumPyAdds support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. 
PIL(Python Imaging Library)Adds support for opening, manipulating, and saving many different image file formats. 
FastAIFastAI is a library that simplifies the training of neural networks.
URLLibIt is a module that can be used for opening URLs
TorchVisionThe torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.
TransformReturns a self-produced dataframe with transformed values after applying the function specified in its parameter. 

THE CODE

import fastai
from fastai.vision import *
from fastai.utils.mem import *
from fastai.vision import open_image, load_learner, image, torch
import numpy as np
import urllib.request
import PIL.Image
from io import BytesIO
import torchvision.transforms as T
from PIL import Image
import requests
from io import BytesIO
import fastai
from fastai.vision import *
from fastai.utils.mem import *
from fastai.vision import open_image, load_learner, image, torch
import numpy as np
import urllib.request
import PIL.Image
from io import BytesIO
import torchvision.transforms as T

class FeatureLoss(nn.Module):
    def __init__(self, m_feat, layer_ids, layer_wgts):
        super().__init__()
        self.m_feat = m_feat
        self.loss_features = [self.m_feat[i] for i in layer_ids]
        self.hooks = hook_outputs(self.loss_features, detach=False)
        self.wgts = layer_wgts
        self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
              ] + [f'gram_{i}' for i in range(len(layer_ids))]

    def make_features(self, x, clone=False):
        self.m_feat(x)
        return [(o.clone() if clone else o) for o in self.hooks.stored]
    
    def forward(self, input, target):
        out_feat = self.make_features(target, clone=True)
        in_feat = self.make_features(input)
        self.feat_losses = [base_loss(input,target)]
        self.feat_losses += [base_loss(f_in, f_out)*w
                             for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
        self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
                             for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
        self.metrics = dict(zip(self.metric_names, self.feat_losses))
        return sum(self.feat_losses)
    
    def __del__(self): self.hooks.remove()

MODEL_URL = "https://www.dropbox.com/s/vxgw0s7ktpla4dk/SkinDeep2.pkl?dl=1"
urllib.request.urlretrieve(MODEL_URL, "SkinDeep2.pkl")
path = Path(".")
learn=load_learner(path, 'SkinDeep2.pkl')

url:"https://cdn.sportmob.com/resource/news/20201013_896180/cover.jpg?cache=1602721802"

p,img_hr,b = learn.predict(img_fast)
Image(img_hr).show(figsize=(8,8))

Noticed anything strange? Tell us about it to unlock another capstone project in Python